Osteoinductive effect of Mineral Trioxide Aggregate versus Portland Cement Type I on mandibular bone lesions
DOI:
https://doi.org/10.59334/ROV.v1i28.156Keywords:
Mineral trioxide aggregate, Portland Cement type I, osteoinduction, osteoblasts, osteocytesAbstract
Introduction: An experimental study was carried out to determine the osteoinductive effect of Mineral Trioxide Aggregate (MTA) versus Portland Cement type I on mandibular bone lesions.
Methodology: Twelve 3-month-old male New Zealand rabbits were divided into 4 equal groups. All rabbits were anesthetized using Pentobarbital. An incision of the mandibular skin was performed to expose the bone on which 3 cavities of 2mm each one were made. In one cavity MTA was placed, in another Portland Cement type I and the third remained empty. The experimental groups were sacrificed at the 1st, 2nd, 3rd and 4th respective weeks and evaluated histologically by counting osteocytes and osteoblasts.
Results: Both MTA and Portland cement have the same osteoinductive capacity in the 1st, 2nd and 3rd week (0.05 <p). Nonetheless, in the 4th week the MTA had greater osteoinductive capacity by stimulating a greater number of osteoblasts than the Portland Cement (p = 0.024).
Conclusions: The MTA and Portland cement type I showed a similar osteoinductive effect during the first 3 weeks of evaluation, however, MTA had the greatest osteoinductive effect during the fourth week of evaluation
Downloads
References
Aguirre-Siancas, E., (2014). Influencia de la variación de la presión de oxígeno ambiental en la formación ósea en cuyes nativos del nivel del mar. Anales de la Facultad de Medicina; 75: 125-9. https://doi.org/10.15381/anales.v75i2.8351
Aguirre-Siancas, E., (2013). Influencia de la hipoxia sobre el metabolismo óseo. Rol central del factor inducible por hipoxia. Anales de la Facultad de Medicina; 74: 321-5. https://doi.org/10.15381/anales.v74i4.2706
Arboleya, L., Castañeda, S., (2015). Osteoclastos: mucho más que células remodeladoras del hueso. Rev Osteoporos Metab Miner; 6: 109-121. https://doi.org/10.4321/S1889-836X2014000400007
Bedoya, A., García, C., (2009). Efecto del mineral trióxido agregado, cemento Portland e hidróxido de calcio en el proceso de reparación de perforaciones radiculares en dientes de canis familiaris. Rev Estomatol Herediana; 19: 103-10. https://doi.org/10.20453/reh.v19i2.1829
Camilleri, J., Montesin, F., Di Silvio, L., Pitt Ford, T. (2005). The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use. Int Endod J; 38: 834–42. https://doi.org/10.1111/j.1365-2591.2005.01028.x
Camilleri J. (2010). Evaluation of the physical properties of an endodontic Portland cement incorporating alternative radiopacifiers used as root-end filling material. Int Endod J;. 43: 231-40. https://doi.org/10.1111/j.1365-2591.2009.01670.x
Chumpitaz-Cerrate, V., Franco-Quino, F., Aguirre-Siancas, E., Mallma-Medina, A., Rodríguez-Vargas, C., Castro-Rodríguez, C. (2016). Influencia de la presión de oxígeno ambiental sobre la regeneración ósea guiada. Rev Clin Periodoncia Implantol Rehabil Oral. https://doi.org/10.1016/j.piro.2016.08.001
D’Antó, V., Di Caprio, M., Ametrano, G., Simeone, M., Rengo, S., Spagnuolo, G., (2010). Effect of mineral trioxide aggregate on mesenchymal stem cells. J Endod; 36: 1839–43. https://doi.org/10.1016/j.joen.2010.08.010
Darvell, B., Wu, R. (2011). MTA—An Hydraulic Silicate Cement: Review update and setting reaction. Dental Ma-terials; 27: 407-22. https://doi.org/10.1016/j.dental.2011.02.001
De-Deus, G., Petruccelli, V., Gurgel-Filho, E., Coutinho-Filho, T. (2006). MTA versus Portland cement as repair material for furcal perforations: a laboratory study using a polymicrobial leakage model. Inter Endod J; 39: 293-8. https://doi.org/10.1111/j.1365-2591.2006.01096.x
Fernández-Tresguerres, I., Alobera, M., Del Canto, M., Blanco, L., (2006). Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med Oral Patol Oral Cir Bucal; 11: 47-5.
Fuentes, F., Mendoza, R., Rosales, A., Cisneros, R. (2010). Guía de Manejo y cuidado de animales de laboratorio : Conejo. 1ª ed. Lima: Ministerio de Salud, Instituto Nacional de Salud.
Gallas, M., Dos Santos, A., Rodríguez, M., Fuentes, I., Crespo, A., (2004). The ostoinductive potential of MTA (Mineral Trioxide Aggregate): a histologic study in rabbits. Eur J Anat; 8: 101-5.
Guven, G., Cehreli, Z., Ural, A., Serdar, M., Basak, F., (2007). Effect of mineral trioxide aggregate cements on transforming growth factor beta1 and bone morphogenetic protein production by human fibroblasts in vitro. J Endod; 33(4): 447–50. https://doi.org/10.1016/j.joen.2006.12.020
Hashiguchi, D., Fukushima, H., Yasuda, H., Masuda, W., Tomikawa, M., Morikawa, K. (2011). Mineral Trioxide Aggregate Inhibits Osteoclastic Bone Resorption. J Dent Res; 90: 912-7. https://doi.org/10.1177/0022034511407335
Khalil, I., Isaac, J., Chaccar, C., Sautier, J., Berdal, A., Naaman, N. (2012). Biocompatibility assessment of modified Portland cement in comparision with MTA: In vivo and in vitro studies. Saudi Endodontic Journal; 2: 6-12. https://doi.org/10.4103/1658-5984.104415
Koh, E., Torabinejad, M., (1997). Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J End; 37: 432–9. https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<432::AID-JBM14>3.0.CO;2-D
Mainard, D. (2014). Sustitutos óseos. EMC - Aparato Locomotor; 47: 1-11. https://doi.org/10.1016/S1286-935X(14)67558-4
Mamalis AA, Cochran DL., (2011). The therapeutic potential of oxygen tension manipulation via hypoxia inducible factors and mimicking agents in guided bone regeneration. A Review. Archives of Oral Biology; 56: 1466-1475. https://doi.org/10.1016/j.archoralbio.2011.05.001
Parirokh, M., Torabinejad, M., (2010). Mineral Trioxide Aggregate: A Comprehensive Literature Review-Part III: Clinical Applications, Drawbacks, and Mechanism of Action. J Endod; 36: 400–13. https://doi.org/10.1016/j.joen.2009.09.009
Rahimi, S., Mokhtari, H., Shahi, S., Kazemi, A., Asgary, S., Eghbal, M. (2012). Osseous reaction to implantation of two endodontic cements: Mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM). Med Oral Patol Oral Cir Bucal; 17: 907-11. https://doi.org/10.4317/medoral.18136
Schembri, M., Peplow, G., Camilleri, J., (2010). Analyses of heavy metals in mineral trioxide aggregate and Portland cement. J Endod; 36: 1210–5. https://doi.org/10.1016/j.joen.2010.02.011
Scott, T., Blackburn, G., Ashley, M., Bayer, I., Ghosh, A., Biris, A., Biswas, A. (2013). Advances in Bionanomaterials for Bone Tissue Engineering. J. Nanosci. Nanotechnol; 13: 1-22. https://doi.org/10.1166/jnn.2013.6733
Silva Neto, J., Brito, R., Schnaider, T., Gragnani, A., Engelman, M., Ferreira, L., (2010). Root perforations treatment using mineral trioxide aggregate and Portland cements. Acta Cir Bras; 25: 479-84. https://doi.org/10.1590/S0102-86502010000600004
Srinivasan, V., Waterhouse, P., Whitwhort, J., (2009). Mineral trioxide aggregate in paediatric dentistry. International Journal of Paediatric Dentistry; 19: 34-7. https://doi.org/10.1111/j.1365-263X.2008.00959.x
Steffen, R., Van Waes, H., (2009). Understanding mineral trioxide aggregate/Portland-cement: a review of literature and background factors. Eur Arch Paediatr Dent; 10(2): 93–7. https://doi.org/10.1007/BF03321608
Yildirim, C., Basak, F., Marti, O., Guven, G., Altun, C. (2016). Clinical and Radiographic Evaluation of the Effectiveness of Formocresol, Mineral Trioxide Aggregate, Portland Cement, and Enamel Matrix Derivative in Primary Teeth Pulpotomies: A Two Year Follow-Up. The Journal of Clinical Pediatric Dentistry; 40: 14-20. https://doi.org/10.17796/1053-4628-40.1.14
Yildirim, T., Gencoglu, N., Firat, I., Perk, C., Guzel, O., (2005). Histologic study of furcation perforations treatment with MTA or Super EBA in dogs’ teeth. OOOOE; 100: 120-124. https://doi.org/10.1016/j.tripleo.2004.09.017
Zairi, A., Lambrianidis, T., Pantelidou, O., Papadimitriou, S., Tziafas, D. (2012). Periradicular Tissue Responses to Biologically Active Molecules or MTA When Applied in Furcal Perforation of Dogs’ Teeth. International Journal of Dentistry, 2012, 257832. https://doi.org/10.1155/2012/257832
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Carlos Humberto Erazo Paredes, Eliberto Ruiz Ramirez, Oscar Alberto Barreda Torres, Elías Ernesto Aguirre Siancas

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Odontología Vital agree to the following terms:
- Authors retain the copyright and grant Universidad Latina de Costa Rica the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Odontología Vital's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.