Visión celular y molecular de la ortopedia funcional de los maxilares

Autores/as

  • Elías Ernesto Aguirre Siancas Universidad Nacional Mayor de San Marcos, Perú.
  • Silvia Granados Martínez Universidad Nacional Federico Villarreal, Perú.

DOI:

https://doi.org/10.59334/ROV.v1i26.225

Palabras clave:

Estimulación ortopédica funcional, osteocitos, mecanotransducción, uniones comunicantes

Resumen

Actualmente, los mecanismos biológicos que subyacen a la estimulación ortopédica funcional están en proceso de entendimiento; sin embargo, se sabe que el osteocito juega un rol esencial, al recibir y transformar dicho estímulo funcional hacia una señal bioquímica, lo que da como consecuencia la secreción de diversas moléculas. Estas se movilizan entre los osteocitos, gracias a su extensa red de uniones comunicantes, y llegan en última instancia a activar a las células efectoras del tejido óseo: osteoblastos y osteoclastos. El objetivo de la revisión es actualizar y compendiar algunos de los más importantes mecanismos celulares y moleculares subyacentes a la terapia ortopédica funcional de los maxilares.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Batra, N, Kar, R, Jiang, J. (2012). Gap junctions and hemichannels in signal transmission, function and develop-ment of bone. Biochim Biophys Acta; 1818(8):1909–18. https://doi.org/10.1016/j.bbamem.2011.09.018

Bimler, H., Bimler, A., (1985). Bases fisiológicas de la ortopedia funcional de los maxilares. Revista Asoc. Argentina Ortop. Func. Maxilares; 18: 64-73.

Buo AM, Stains JP. (2014). Gap junctional regulation of signal transduction in bone cells. FEBS Lett; 588(8): 1315-21. https://doi.org/10.1016/j.febslet.2014.01.025

Fujita, H., Hinoi E., Nakatani, E., Yamamoto T., Takarada T, Yoneda Y. (2012). Possible modulation of process ex-tension by N-Methyl-D-aspartate receptor expressed in osteocytic MLO-Y4 cells. J Pharmacol Sci; 119(1): 112 – 6. https://doi.org/10.1254/jphs.12068SC

Haugh, M., Vaughan, T., McNamara, L., The role of integrin αVα3 in osteocyte mechanotransduction. (2015). J Mech Behav Biomed Mater; 42: 67–75. https://doi.org/10.1016/j.jmbbm.2014.11.001

Hu, M., Tian, G., Gibbons, D., Jiao, J., Qin, Y.. (2015). Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations. Arch Biochem Biophys; 579: 55–61. https://doi.org/10.1016/j.abb.2015.05.012

Ishihara, Y., Sugawara, Y., Kamioka, H., Kawanabe, N., Hayano, S., Balam, T.. (2013). Ex vivo real-time observation of Ca2+ signaling in living bone in response to shear stress applied on the bone surface. Bone; 53(1): 204–15. https://doi.org/10.1016/j.bone.2012.12.002

Jing, D., Lu, L., Luo, E., Sajda, P., Leong, P., Guo, X.. (2013). Spatiotemporal properties of intracellular calcium sig-naling in osteocytic and osteoblastic cell networks under fluid flow. Bone; 53(2): 531–40. https://doi.org/10.1016/j.bone.2013.01.008

Kaiser, J., Lemaire, T., Naili, S., Sansalone, V., Komarova, SV.. (2012). Do calcium fluxes within cortical bone affect osteocyte mechanosensitivity? J Theor Biol; 303: 75–86. https://doi.org/10.1016/j.jtbi.2012.03.001

Klein-Nulend, J., Bakker, A., Bacabac, R., Vatsa, A., Weinbaum, S.. (2013). Mechanosensation and transduction in osteocytes. Bone; 54(2): 182–190. https://doi.org/10.1016/j.bone.2012.10.013

Liu, Y., Thomopoulos, S., Birman, V., Li, J., Genin, G., (2012). Bi-material attachment through a compliant interfa-cial system at the tendon-to-bone insertion site. Mech Mater; 44: 83–92. https://doi.org/10.1016/j.mechmat.2011.08.005

Loiselle, A., Jiang, J., Donahue, H.. (2013). Gap junction and hemichannel functions in osteocytes. Bone; 54(2): 205–12. https://doi.org/10.1016/j.bone.2012.08.132

Lu, X., Huo, B., Park, M., Guo, X.. (2012). Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone; 51(3): 466–73. https://doi.org/10.1016/j.bone.2012.05.021

Mason, D., (2004). Glutamate signalling and its potential application to tissue engineering of bone. Eur Cell Ma-ter; 7:12-26. https://doi.org/10.22203/eCM.v007a02

Malone, A., Anderson, C., Tummala, P., Kwon, R., Johnston, T., Stearns, T.. (2007). Primary cilia mediate mechano-sensing in bone cells by a calcium-independent pathway. Proc. Natl. Acad. Sci. USA; 104(33): 13325–330. https://doi.org/10.1073/pnas.0700636104

Merrifield, P., Laird, D.. (2016). Connexins in skeletal muscle development and disease. Semin Cell Dev Biol; 50: 67–73. https://doi.org/10.1016/j.semcdb.2015.12.001

Mullen, C., Haugh, M., Schaffler, M., Majeska, R., McNamara, L.. (2013). Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation. J Mech Behav Biomed Mater; 28: 183 – 94. https://doi.org/10.1016/j.jmbbm.2013.06.013

Nguyen, A., Jacobs, C., (2013). Emerging role of primary cilia as mechanosensors in osteocytes. Bone; 54(2): 196– 204. https://doi.org/10.1016/j.bone.2012.11.016

Planas, P. (2008). Rehabilitación neuro – oclusal. 2da ed. Madrid: Amolca.

Prideaux, M., Findlay, D., Atkins, G.. (2016). Osteocytes: The master cells in bone remodeling. Curr Opin Pharma-col; 28: 24–30. https://doi.org/10.1016/j.coph.2016.02.003

Queiroz, I., Justino, H., Berretin-Feliz, G.. (2012). Terapia fonoaudiológica em motricidade orofacial. 1ra ed. São Paulo: Pulso Ed.

Rosa, N., Simoes, R., Magalhães, F., Torres, Marques, A.. (2015). From mechanical stimulus to bone formation: A review. Med Eng Phys; 37(8): 719–28. https://doi.org/10.1016/j.medengphy.2015.05.015

Sakai, E., Cotirm-Ferreira, F., Santos, N.. (2012). Nova visao em O ortodontia e ortopedia funcional dos maxilares. 1era ed. São Paulo: Santos Ed.

Schwartz, AG., Pasteris, JD., Genin, GM., Daulton, TL., Thomopoulos, S.. (2012). Mineral distributions at the deve-loping tendon enthesis. PLoS One; 7(11): e48630. https://doi.org/10.1371/journal.pone.0048630

Simões, W. Sakai, E., Morais, Macedo, F.. (2013). Ortopedia funcional dos maxilares DTM e dor orofacial. 1era ed. São Paulo: Tota Ed.

Simões, W.m (2004). Ortopedia funcional de los maxilares. 3era ed. Buenos Aires: Artes Médicas Latinoamericanas.

Spyropoulou, A., Karamesinis, K., Basdra, E.. (2015). Mechanotransduction pathways in bone pathobiology. Bio-chim Biophys Acta; 1852(9): 1700–08. https://doi.org/10.1016/j.bbadis.2015.05.010

Stains, J., Civitelli, R.. (2016). Connexins in the skeleton. Semin Cell Dev Biol; 50: 31–39. https://doi.org/10.1016/j.semcdb.2015.12.017

Takano-Yamamoto, T., (2014). Osteocyte function under compressive mechanical force. Japanese Dental Science Review; 50(2): 29-39. https://doi.org/10.1016/j.jdsr.2013.10.004

Tatsumi, S., Ishii, K., Amizuka, N., Li, M., Kobayashi, T., Kohno, K.. (2007). Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab; 5(6): 464–475. https://doi.org/10.1016/j.cmet.2007.05.001

Temiyasathit, S., Jacobs, C., (2010). Osteocyte primary cilium and its role in bone Mechanotransduction. Ann. N.Y. Acad. Sci; 1192: 422–28. https://doi.org/10.1111/j.1749-6632.2009.05243.x

Thompson, W., Rubin, C., Rubin, J.. (2012). Mechanical regulation of signaling pathways in bone. Gene; 503(2):179-93. https://doi.org/10.1016/j.gene.2012.04.076

Turner, C., Robling, A., Duncan, R., Burr, D.. (2002). Do bone cells behave like a neuronal network? Calcif Tissue Int; 70(6): 435–42. https://doi.org/10.1007/s00223-001-1024-z

Vaughan, T., Verbruggen S, McNamara, L. (2013). Are all osteocytes equal? Multiscale modelling of cortical bone to characterise the mechanical stimulation of osteocytes. Int J. Numer Method Biomed Eng; 29(12): 1361–72.

Descargas

Publicado

2017-06-01

Cómo citar

Aguirre Siancas, E. E., & Granados Martínez, S. (2017). Visión celular y molecular de la ortopedia funcional de los maxilares. O.V., 1(26), 62–67. https://doi.org/10.59334/ROV.v1i26.225

Número

Sección

Artículo de investigación

Métricas alternativas