Cellular and molecular view of the maxillary functional orthopedics
DOI:
https://doi.org/10.59334/ROV.v1i26.225Keywords:
Orthopedic functional stimulation, osteocytes, mechanotransduction, gap junctionsAbstract
Currently, the biological mechanisms underlying functional orthopedic stimulation are in process of understanding. However, it is known that osteocyte plays an essential role, to receive and process the functional stimulus to biochemical signals giving as result the secretion of various molecules. Such molecules are mobilized between the osteocytes, thanks to its extensive network of gap junctions, ultimately coming to activate effector cells of bone tissue: osteoblasts and osteoclasts. The aim of the review is to update some of the cellular and molecular mechanisms underlying functional orthopedic therapy of the maxillary.
Downloads
References
Batra, N, Kar, R, Jiang, J. (2012). Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim Biophys Acta; 1818(8):1909–18. https://doi.org/10.1016/j.bbamem.2011.09.018
Bimler, H., Bimler, A., (1985). Bases fisiológicas de la ortopedia funcional de los maxilares. Revista Asoc. Argentina Ortop. Func. Maxilares; 18: 64-73.
Buo AM, Stains JP. (2014). Gap junctional regulation of signal transduction in bone cells. FEBS Lett; 588(8): 1315-21. https://doi.org/10.1016/j.febslet.2014.01.025
Fujita, H., Hinoi E., Nakatani, E., Yamamoto T., Takarada T, Yoneda Y. (2012). Possible modulation of process extension by N-Methyl-D-aspartate receptor expressed in osteocytic MLO-Y4 cells. J Pharmacol Sci; 119(1): 112 – 6. https://doi.org/10.1254/jphs.12068SC
Haugh, M., Vaughan, T., McNamara, L., The role of integrin αVα3 in osteocyte mechanotransduction. (2015). J Mech Behav Biomed Mater; 42: 67–75. https://doi.org/10.1016/j.jmbbm.2014.11.001
Hu, M., Tian, G., Gibbons, D., Jiao, J., Qin, Y.. (2015). Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations. Arch Biochem Biophys; 579: 55–61. https://doi.org/10.1016/j.abb.2015.05.012
Ishihara, Y., Sugawara, Y., Kamioka, H., Kawanabe, N., Hayano, S., Balam, T.. (2013). Ex vivo real-time observation of Ca2+ signaling in living bone in response to shear stress applied on the bone surface. Bone; 53(1): 204–15. https://doi.org/10.1016/j.bone.2012.12.002
Jing, D., Lu, L., Luo, E., Sajda, P., Leong, P., Guo, X.. (2013). Spatiotemporal properties of intracellular calcium signaling in osteocytic and osteoblastic cell networks under fluid flow. Bone; 53(2): 531–40. https://doi.org/10.1016/j.bone.2013.01.008
Kaiser, J., Lemaire, T., Naili, S., Sansalone, V., Komarova, SV.. (2012). Do calcium fluxes within cortical bone affect osteocyte mechanosensitivity? J Theor Biol; 303: 75–86. https://doi.org/10.1016/j.jtbi.2012.03.001
Klein-Nulend, J., Bakker, A., Bacabac, R., Vatsa, A., Weinbaum, S.. (2013). Mechanosensation and transduction in osteocytes. Bone; 54(2): 182–190. https://doi.org/10.1016/j.bone.2012.10.013
Liu, Y., Thomopoulos, S., Birman, V., Li, J., Genin, G., (2012). Bi-material attachment through a compliant interfacial system at the tendon-to-bone insertion site. Mech Mater; 44: 83–92. https://doi.org/10.1016/j.mechmat.2011.08.005
Loiselle, A., Jiang, J., Donahue, H.. (2013). Gap junction and hemichannel functions in osteocytes. Bone; 54(2): 205–12. https://doi.org/10.1016/j.bone.2012.08.132
Lu, X., Huo, B., Park, M., Guo, X.. (2012). Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone; 51(3): 466–73. https://doi.org/10.1016/j.bone.2012.05.021
Mason, D., (2004). Glutamate signalling and its potential application to tissue engineering of bone. Eur Cell Mater; 7:12-26. https://doi.org/10.22203/eCM.v007a02
Malone, A., Anderson, C., Tummala, P., Kwon, R., Johnston, T., Stearns, T.. (2007). Primary cilia mediate mechano-sensing in bone cells by a calcium-independent pathway. Proc. Natl. Acad. Sci. USA; 104(33): 13325–330. https://doi.org/10.1073/pnas.0700636104
Merrifield, P., Laird, D.. (2016). Connexins in skeletal muscle development and disease. Semin Cell Dev Biol; 50: 67–73. https://doi.org/10.1016/j.semcdb.2015.12.001
Mullen, C., Haugh, M., Schaffler, M., Majeska, R., McNamara, L.. (2013). Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation. J Mech Behav Biomed Mater; 28: 183 – 94. https://doi.org/10.1016/j.jmbbm.2013.06.013
Nguyen, A., Jacobs, C., (2013). Emerging role of primary cilia as mechanosensors in osteocytes. Bone; 54(2): 196– 204. https://doi.org/10.1016/j.bone.2012.11.016
Planas, P. (2008). Rehabilitación neuro – oclusal. 2da ed. Madrid: Amolca.
Prideaux, M., Findlay, D., Atkins, G.. (2016). Osteocytes: The master cells in bone remodeling. Curr Opin Pharmacol; 28: 24–30. https://doi.org/10.1016/j.coph.2016.02.003
Queiroz, I., Justino, H., Berretin-Feliz, G.. (2012). Terapia fonoaudiológica em motricidade orofacial. 1ra ed. São Paulo: Pulso Ed.
Rosa, N., Simoes, R., Magalhães, F., Torres, Marques, A.. (2015). From mechanical stimulus to bone formation: A review. Med Eng Phys; 37(8): 719–28. https://doi.org/10.1016/j.medengphy.2015.05.015
Sakai, E., Cotirm-Ferreira, F., Santos, N.. (2012). Nova visao em O ortodontia e ortopedia funcional dos maxilares. 1era ed. São Paulo: Santos Ed.
Schwartz, AG., Pasteris, JD., Genin, GM., Daulton, TL., Thomopoulos, S.. (2012). Mineral distributions at the developing tendon enthesis. PLoS One; 7(11): e48630. https://doi.org/10.1371/journal.pone.0048630
Simões, W. Sakai, E., Morais, Macedo, F.. (2013). Ortopedia funcional dos maxilares DTM e dor orofacial. 1era ed. São Paulo: Tota Ed.
Simões, W.m (2004). Ortopedia funcional de los maxilares. 3era ed. Buenos Aires: Artes Médicas Latinoamericanas.
Spyropoulou, A., Karamesinis, K., Basdra, E.. (2015). Mechanotransduction pathways in bone pathobiology. Bio-chim Biophys Acta; 1852(9): 1700–08. https://doi.org/10.1016/j.bbadis.2015.05.010
Stains, J., Civitelli, R.. (2016). Connexins in the skeleton. Semin Cell Dev Biol; 50: 31–39. https://doi.org/10.1016/j.semcdb.2015.12.017
Takano-Yamamoto, T., (2014). Osteocyte function under compressive mechanical force. Japanese Dental Science Review; 50(2): 29-39. https://doi.org/10.1016/j.jdsr.2013.10.004
Tatsumi, S., Ishii, K., Amizuka, N., Li, M., Kobayashi, T., Kohno, K.. (2007). Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab; 5(6): 464–475. https://doi.org/10.1016/j.cmet.2007.05.001
Temiyasathit, S., Jacobs, C., (2010). Osteocyte primary cilium and its role in bone Mechanotransduction. Ann. N.Y. Acad. Sci; 1192: 422–28. https://doi.org/10.1111/j.1749-6632.2009.05243.x
Thompson, W., Rubin, C., Rubin, J.. (2012). Mechanical regulation of signaling pathways in bone. Gene; 503(2):179-93. https://doi.org/10.1016/j.gene.2012.04.076
Turner, C., Robling, A., Duncan, R., Burr, D.. (2002). Do bone cells behave like a neuronal network? Calcif Tissue Int; 70(6): 435–42. https://doi.org/10.1007/s00223-001-1024-z
Vaughan, T., Verbruggen S, McNamara, L. (2013). Are all osteocytes equal? Multiscale modelling of cortical bone to characterise the mechanical stimulation of osteocytes. Int J. Numer Method Biomed Eng; 29(12): 1361–72.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Elías Ernesto Aguirre Siancas, Silvia Granados Martínez

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Odontología Vital agree to the following terms:
- Authors retain the copyright and grant Universidad Latina de Costa Rica the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Odontología Vital's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.