Fracture resistance of crowns prepared with lithium disilicate applied to different marginal terminations F
DOI:
https://doi.org/10.59334/ROV.v1i32.379Keywords:
Dental crown, dental materials, dental restoration failure, dental preparation, lithium disilicate, chamfer, knife edge, flexural resistance, CAD–CAM, computed aided designAbstract
Objective: To evaluate the influence of the type of shoulder margins; Knife edge (F) and Chamfer (C) on the flexural strength of CAD / CAM lithium disilicate crowns in thicknesses of 0.8 mm and 0.5 mm.
Materials and Methods: 40 healthy upper premolars, in 2 groups according to the type of termination G1 = F and G2 = C; 2 subgroups referring to the material thickness Sg1 = 0.8mm and Sg2 0.5mm (5 crowns for each subgroup), were subjected to vertical (v) and horizontal (h) compression forces. The most frequent type of fracture was observed; cohesive in porcelain (cp), adhesive in porcelain (ap), mixed small (mp) and mixed long (ml).
Results: in preparations with 0.8 mm and 0.5 mm thicknesses, there was a significant difference in relation to the best termination, this was C; their values were Sg1 (h = 1347.2 N / v = 1402.0.F; Sg1 (h = 965.6 N / v = 794.8 N) .F at 0.5 mm showed better performance against horizontal forces C; Sg2 (h = 924.8 N / v = 813.4 N) and for F; Sg2 (h = 1217.0 N / v = 576.0 N)
Conclusions: the most frequent type of fracture is cp and ap finishing chamfer and knife edge can be used safely show acceptable values of flexural strength, by reducing the thickness of the chamfer restoration reduces its strength, the knife edge increases it.
Downloads
References
Anusavice, K. (2012 ). Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal-ceramic fixed dental prostheses. Dental Materials, vol 1 (102–111). https://doi.org/10.1016/j.dental.2011.09.012
Anwar, M. (2015). The effect of luting cement Type and Thickness on stress distribution in upper premolar implant restore with metal ceramic crowns. Tanta dental journal, vol1 (48-55). https://doi.org/10.1016/j.tdj.2015.01.004
Att, W. (2016). Fracture resistance of single-tooth implant-supported all ceramic restorations after exposure to the artificial mouth, vol 33 (380–386). https://doi.org/10.1111/j.1365-2842.2005.01571.x
Azim, T. (2015). Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. The Journal of Prosthetic Dentistry, Vol 2 (25-41).
Carvalho, A. (2014). Fatigue resistence of CAD CAM complete Crowns with a simplified cementation process. The journal of prothetic dentistry, vol 111(310-317). https://doi.org/10.1016/j.prosdent.2013.09.020
Carrión, M. (s.f.). Instrumentos e insumos para el tallado dental. Recuperado el 27 de abril de 2017, de http://marcoca-rrion.blogspot.com/
Commisso. M. (2015). Finite element analysis of the human mastication cycle. Journal of the Mechanical Behavior of Biomedical Materials. vol 41 (23- 35). https://doi.org/10.1016/j.jmbbm.2014.09.022
Contrepois, M. (2013). Marginal adaptation of ceramic crowns: A systematic review. The Journal of Prosthetic Dentistry, 447-454. vol 110 (447- 454). https://doi.org/10.1016/j.prosdent.2013.08.003
Clausen, J. (2010). Dynamic fatigue and fracture resistance of non-retentive all ceramic full-coverage molar restorations. Influence of ceramic material and preparation design. Dental Material, vol 26 (533-538). https://doi.org/10.1016/j.dental.2010.01.011
Dhima, M. (2014). Practice-based clinical evaluation of ceramic single crowns after at least five years. The Journal of Prosthetic Dentistry, vol111(124-130). https://doi.org/10.1016/j.prosdent.2013.06.015
Edelhoff, D. (2012). Tooth structure removal associated with various preparation designs for anterior teeth. Journal of Prosthetics Dentistry .vol 87 ( 503- 509). https://doi.org/10.1155/2012/742509
Fathi, H. (2015). The effect of TiO2 concentration on properties of apatitemullite glass-ceramics for dental use. Avances en odontoestomatologia. vol 32(311-322). https://doi.org/10.1016/j.dental.2015.11.012
Gracis, S. (2015). A new classification system for all ceramic like restorative materials. International Journal of prosthodontics, vol 38 (227-235). https://doi.org/10.11607/ijp.4244
Gressler, L. (2015). influence of resine cement Thickness on the fatigue failure loads of CAD CAM feldespatic crowns. Dental Materials, vol 31 (895- 900). https://doi.org/10.1016/j.dental.2015.04.019
Guzman, J. (2012). influence of surface treatment time with flourhidric acid vita VM 13 porcelain on tensile bond strength to a luting resin cement. In vitro study. Revista clinica de priodoncia impantologia y rehabilitacion oral, vol 5 (117-121). https://doi.org/10.1016/S0718-5391(12)70104-0
Habekost, G. (2011). Fracture resistance of premolars restored with partial ceramic restorations and submitted to two different loading stresses. vol 31 (204-211). https://doi.org/10.2341/05-11
Helvey, G. (2014). Classifying dental ceramics: Numerous materials and formulations available for indirect restorations, Compendium of Continuing education in Dentistry, vol 35 (38 – 43).
Homaei, E. (2016). Static and fatigue mechanical behavior of three dental CAD/CAM ceramics. Diario del comportamiento mecánico de materiales biomédicos. vol 59 (304-313). https://doi.org/10.1016/j.jmbbm.2016.01.023
Kim, B. (2013). An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system. dental materials, vol 29 (91-96). https://doi.org/10.1016/j.dental.2013.04.007
Kim, L. (2014). Ceramic dental biomaterials and CAD/CAM technology: State of the art. Journal of Prosthodontic Research, vol 58 (208–216). https://doi.org/10.1016/j.jpor.2014.07.003
Lawn, E. (2016). Fracture-resistant monolithic dental crowns. Dental Materials. vol 32 (442/449). https://doi.org/10.1016/j.dental.2015.12.010
Maghrabi, A. (2011). Relationship of margin design for fiber-reinforced composite crowns to compressive fracture resistance. American Collegue of Prosthodontist., vol 20 (355-360). https://doi.org/10.1111/j.1532-849X.2011.00713.x
Nicolasen, M.(2014). Comparation of fatigue resistance and failure modes between metal ceramic and all cerami crowns by cyclic loading in water. journal of dentistry, vol 42 (1613-1620). https://doi.org/10.1016/j.jdent.2014.08.013
Oilo, M. (2014). Simulation of clinical fractures for three different all ceramic crowns. European Journal of Oral Science, vol 122 (245–250). https://doi.org/10.1111/eos.12128
Olio, M. (2016). Fracture origins in twenty two dental alumina crowns. Journal of mechanical Behavior of biomecanical materials, vol 31 (93-103). https://doi.org/10.1016/j.jmbbm.2015.08.006
Olio, M. (2013). Fractographic analyss of all ceramic crowns: A study of 27 clinically fractured crowns. Dental Materials, vol 29 (78-84). https://doi.org/10.1016/j.dental.2013.03.018
Olio. M. (2013). Clinically relavant fracture testing of all ceramic crowns. Dental Materials, vol 29( 815-823). https://doi.org/10.1016/j.dental.2013.04.026
Pegoraro, L. (2010). Prótesis fija. Bauru: Artes Médicas. vol 4 (1-305).ISNB:85- 404-039-8.
Peixotto, R. (2007). Light transmission trough porcelain. Dental Materials, vol (1363-1368). https://doi.org/10.1016/j.dental.2006.11.025
Poggio, C. (2012). A retrospective analysis of 102 zirconia single crowns with knife-edge margins. The Journal of Prosthetic Dentistry, vol 107 (316- 321). https://doi.org/10.1016/S0022-3913(12)60083-3
Preis, V. (2015). Influence of cementation on in vitro performance, marginal adaptation and fracture resistance of CAD/ CAM-fabricated ZLS molar crowns. Dental Materials, vol 31 (1363-1369). https://doi.org/10.1016/j.dental.2015.08.154
Ritter, A. (2009). An eight-year clinical evaluation of filled and unfilled one-bottle dental adhesives. Journal of the dental American association, vol 140(28-37). PMID: 19119164. https://doi.org/10.14219/jada.archive.2009.0015
Rueda, A. (2015). Puesta en contacto y la fatiga de la chapa de porcelana feldespática sobre zirconia . Materiales dentales , vol 31(217-224). https://doi.org/10.1016/j.dental.2014.12.006
Rungruanganut, P. (2010). Two imaging techniques for 3D quantification of pre- cementation space for CAD/CAM crowns. Journal of Dentistry, vol 38 (995-1000). https://doi.org/10.1016/j.jdent.2010.08.015
Scherrer, S. (2010). Direct comparison of the bond strength results of the different test methods: a critical literature review: Dental Materials. vol 6(78-93). https://doi.org/10.1016/j.dental.2009.12.002
Shahrbaf, S. (2014). Fracture strength of machined ceramic crowns as a function of tooth preparation design and the elastic modulus of the cement. Dental Materials, vol 30 (234-241). https://doi.org/10.1016/j.dental.2013.11.010
Shemblish, F. (2016). Fatigue resistance of CAD CAM resine composite molar crowns . Dental Materials. vol 32(499-509). https://doi.org/10.1016/j.dental.2015.12.005
Shen, J. (2014). Cerámicas de Odontología. Elsevier.vol 3 (1-530).
Shimanda, A. (2015). Effect of experimental jaw muscle pain on dynamic bite force during mastication. Oral Biology. vol 60(256-266). https://doi.org/10.1016/j.archoralbio.2014.11.001
Sigueira, F. (2016). Laboratory performance of universal adhesive systems for luting CAD/CAM Restorative Materials. Journal Adhesive Dentistry,18 (331-340). https://doi.org/10.3290/j.jad.a36519
Skouridou, N. (2013). Fracture strength of minimally prepared all-ceramic CEREC crowns after simulating 5 years of service. Dental Master, vol 29 (70-77). https://doi.org/10.1016/j.dental.2013.03.019
Spitznagel, F. (2014). Resin Bond to Indirect composite and new ceramic/polymer materials. A rewiew of the Literature. Journal of Esthetic restoration Dentistry. vol 26 (382-393). https://doi.org/10.1111/jerd.12100
Stona, D. (2015). Fracture resistence of computer aided design and aumputer aided manofacturing ceremic crown cemented on solid abutments. The journal of American dental association, vol 146 (501-507). https://doi.org/10.1016/j.adaj.2015.02.012
Tiu, J. (2015). Reporting numeric values of complete crowns. Part 1: Clinical preparation parameters. The journal of prosthetic dentistry, vol (114 (67-74). https://doi.org/10.1016/j.prosdent.2015.01.006
Tsujimoto, A. (2010). Enamel bonding of single-step selfetch adhesive: influence of surface energy characteristics. 38 (123 -130). https://doi.org/10.1016/j.jdent.2009.09.011
Yildiz, C. (2013). Marginal internal adaptation and fracture resistance of CAD/CAM Crown restorations. Dental Materials Journal, vol 42 (199- 209). https://doi.org/10.1016/j.jdent.2013.10.002
Zahran, M. (2015). Benchmarking outcomes in implant prosthodontics: Partial fixed dental prostheses and crowns supported by implants with a turned surface over 10 to 28 years at the University of Toronto. Int J Oral Maxillofac Implants.vol 21 (45-53). https://doi.org/10.11607/jomi.5454
Zhang, Y. (2016). Frature resistant monolitic dental crowns. Dental Materials, vol 32 ( 442-449). https://doi.org/10.1016/j.dental.2015.12.010
Zhang, Z. (2016). Effects of design parameters on fracture resistance of glass simulated dental crowns. Dental Materials. vol 32 (373-384). https://doi.org/10.1016/j.dental.2015.11.018
Zhang. Y. (2013). Fatigue of dental ceramics. Journal of Dentristry, vol 41(135 - 147). https://doi.org/10.1016/j.jdent.2013.10.007
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Marco Zúñiga Llerena, Fabián Rosero Salas, Byron Velásquez Ron

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Odontología Vital agree to the following terms:
- Authors retain the copyright and grant Universidad Latina de Costa Rica the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Odontología Vital's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.