Fracture resistance of crowns prepared with lithium disilicate applied to different marginal terminations F

Authors

  • Marco Zúñiga Llerena Universidad de las Américas
  • Fabián Rosero Salas Universidad de las Américas
  • Byron Velásquez Ron Universidad de las Américas

DOI:

https://doi.org/10.59334/ROV.v1i32.379

Keywords:

Dental crown, dental materials, dental restoration failure, dental preparation, lithium disilicate, chamfer, knife edge, flexural resistance, CAD–CAM, computed aided design

Abstract

Objective: To evaluate the influence of the type of shoulder margins; Knife edge (F) and Chamfer (C) on the flexural strength of CAD / CAM lithium disilicate crowns in thicknesses of 0.8 mm and 0.5 mm.

Materials and Methods: 40 healthy upper premolars, in 2 groups according to the type of termination G1 = F and G2 = C; 2 subgroups referring to the material thickness Sg1 = 0.8mm and Sg2 0.5mm (5 crowns for each subgroup), were subjected to vertical (v) and horizontal (h) compression forces. The most frequent type of fracture was observed; cohesive in porcelain (cp), adhesive in porcelain (ap), mixed small (mp) and mixed long (ml).

Results: in preparations with 0.8 mm and 0.5 mm thicknesses, there was a significant difference in relation to the best termination, this was C; their values were Sg1 (h = 1347.2 N / v = 1402.0.F; Sg1 (h = 965.6 N / v = 794.8 N) .F at 0.5 mm showed better performance against horizontal forces C; Sg2 (h = 924.8 N / v = 813.4 N) and for F; Sg2 (h = 1217.0 N / v = 576.0 N)

Conclusions: the most frequent type of fracture is cp and ap finishing chamfer and knife edge can be used safely show acceptable values of flexural strength, by reducing the thickness of the chamfer restoration reduces its strength, the knife edge increases it.

Downloads

Download data is not yet available.

References

Anusavice, K. (2012 ). Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal-ceramic fixed dental prostheses. Dental Materials, vol 1 (102–111). https://doi.org/10.1016/j.dental.2011.09.012

Anwar, M. (2015). The effect of luting cement Type and Thickness on stress distribution in upper premolar implant restore with metal ceramic crowns. Tanta dental journal, vol1 (48-55). https://doi.org/10.1016/j.tdj.2015.01.004

Att, W. (2016). Fracture resistance of single-tooth implant-supported all ceramic restorations after exposure to the artificial mouth, vol 33 (380–386). https://doi.org/10.1111/j.1365-2842.2005.01571.x

Azim, T. (2015). Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. The Journal of Prosthetic Dentistry, Vol 2 (25-41).

Carvalho, A. (2014). Fatigue resistence of CAD CAM complete Crowns with a simplified cementation process. The journal of prothetic dentistry, vol 111(310-317). https://doi.org/10.1016/j.prosdent.2013.09.020

Carrión, M. (s.f.). Instrumentos e insumos para el tallado dental. Recuperado el 27 de abril de 2017, de http://marcoca-rrion.blogspot.com/

Commisso. M. (2015). Finite element analysis of the human mastication cycle. Journal of the Mechanical Behavior of Biomedical Materials. vol 41 (23- 35). https://doi.org/10.1016/j.jmbbm.2014.09.022

Contrepois, M. (2013). Marginal adaptation of ceramic crowns: A systematic review. The Journal of Prosthetic Dentistry, 447-454. vol 110 (447- 454). https://doi.org/10.1016/j.prosdent.2013.08.003

Clausen, J. (2010). Dynamic fatigue and fracture resistance of non-retentive all ceramic full-coverage molar restorations. Influence of ceramic material and preparation design. Dental Material, vol 26 (533-538). https://doi.org/10.1016/j.dental.2010.01.011

Dhima, M. (2014). Practice-based clinical evaluation of ceramic single crowns after at least five years. The Journal of Prosthetic Dentistry, vol111(124-130). https://doi.org/10.1016/j.prosdent.2013.06.015

Edelhoff, D. (2012). Tooth structure removal associated with various preparation designs for anterior teeth. Journal of Prosthetics Dentistry .vol 87 ( 503- 509). https://doi.org/10.1155/2012/742509

Fathi, H. (2015). The effect of TiO2 concentration on properties of apatitemullite glass-ceramics for dental use. Avances en odontoestomatologia. vol 32(311-322). https://doi.org/10.1016/j.dental.2015.11.012

Gracis, S. (2015). A new classification system for all ceramic like restorative materials. International Journal of prosthodontics, vol 38 (227-235). https://doi.org/10.11607/ijp.4244

Gressler, L. (2015). influence of resine cement Thickness on the fatigue failure loads of CAD CAM feldespatic crowns. Dental Materials, vol 31 (895- 900). https://doi.org/10.1016/j.dental.2015.04.019

Guzman, J. (2012). influence of surface treatment time with flourhidric acid vita VM 13 porcelain on tensile bond strength to a luting resin cement. In vitro study. Revista clinica de priodoncia impantologia y rehabilitacion oral, vol 5 (117-121). https://doi.org/10.1016/S0718-5391(12)70104-0

Habekost, G. (2011). Fracture resistance of premolars restored with partial ceramic restorations and submitted to two different loading stresses. vol 31 (204-211). https://doi.org/10.2341/05-11

Helvey, G. (2014). Classifying dental ceramics: Numerous materials and formulations available for indirect restorations, Compendium of Continuing education in Dentistry, vol 35 (38 – 43).

Homaei, E. (2016). Static and fatigue mechanical behavior of three dental CAD/CAM ceramics. Diario del comportamiento mecánico de materiales biomédicos. vol 59 (304-313). https://doi.org/10.1016/j.jmbbm.2016.01.023

Kim, B. (2013). An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system. dental materials, vol 29 (91-96). https://doi.org/10.1016/j.dental.2013.04.007

Kim, L. (2014). Ceramic dental biomaterials and CAD/CAM technology: State of the art. Journal of Prosthodontic Research, vol 58 (208–216). https://doi.org/10.1016/j.jpor.2014.07.003

Lawn, E. (2016). Fracture-resistant monolithic dental crowns. Dental Materials. vol 32 (442/449). https://doi.org/10.1016/j.dental.2015.12.010

Maghrabi, A. (2011). Relationship of margin design for fiber-reinforced composite crowns to compressive fracture resistance. American Collegue of Prosthodontist., vol 20 (355-360). https://doi.org/10.1111/j.1532-849X.2011.00713.x

Nicolasen, M.(2014). Comparation of fatigue resistance and failure modes between metal ceramic and all cerami crowns by cyclic loading in water. journal of dentistry, vol 42 (1613-1620). https://doi.org/10.1016/j.jdent.2014.08.013

Oilo, M. (2014). Simulation of clinical fractures for three different all ceramic crowns. European Journal of Oral Science, vol 122 (245–250). https://doi.org/10.1111/eos.12128

Olio, M. (2016). Fracture origins in twenty two dental alumina crowns. Journal of mechanical Behavior of biomecanical materials, vol 31 (93-103). https://doi.org/10.1016/j.jmbbm.2015.08.006

Olio, M. (2013). Fractographic analyss of all ceramic crowns: A study of 27 clinically fractured crowns. Dental Materials, vol 29 (78-84). https://doi.org/10.1016/j.dental.2013.03.018

Olio. M. (2013). Clinically relavant fracture testing of all ceramic crowns. Dental Materials, vol 29( 815-823). https://doi.org/10.1016/j.dental.2013.04.026

Pegoraro, L. (2010). Prótesis fija. Bauru: Artes Médicas. vol 4 (1-305).ISNB:85- 404-039-8.

Peixotto, R. (2007). Light transmission trough porcelain. Dental Materials, vol (1363-1368). https://doi.org/10.1016/j.dental.2006.11.025

Poggio, C. (2012). A retrospective analysis of 102 zirconia single crowns with knife-edge margins. The Journal of Prosthetic Dentistry, vol 107 (316- 321). https://doi.org/10.1016/S0022-3913(12)60083-3

Preis, V. (2015). Influence of cementation on in vitro performance, marginal adaptation and fracture resistance of CAD/ CAM-fabricated ZLS molar crowns. Dental Materials, vol 31 (1363-1369). https://doi.org/10.1016/j.dental.2015.08.154

Ritter, A. (2009). An eight-year clinical evaluation of filled and unfilled one-bottle dental adhesives. Journal of the dental American association, vol 140(28-37). PMID: 19119164. https://doi.org/10.14219/jada.archive.2009.0015

Rueda, A. (2015). Puesta en contacto y la fatiga de la chapa de porcelana feldespática sobre zirconia . Materiales dentales , vol 31(217-224). https://doi.org/10.1016/j.dental.2014.12.006

Rungruanganut, P. (2010). Two imaging techniques for 3D quantification of pre- cementation space for CAD/CAM crowns. Journal of Dentistry, vol 38 (995-1000). https://doi.org/10.1016/j.jdent.2010.08.015

Scherrer, S. (2010). Direct comparison of the bond strength results of the different test methods: a critical literature review: Dental Materials. vol 6(78-93). https://doi.org/10.1016/j.dental.2009.12.002

Shahrbaf, S. (2014). Fracture strength of machined ceramic crowns as a function of tooth preparation design and the elastic modulus of the cement. Dental Materials, vol 30 (234-241). https://doi.org/10.1016/j.dental.2013.11.010

Shemblish, F. (2016). Fatigue resistance of CAD CAM resine composite molar crowns . Dental Materials. vol 32(499-509). https://doi.org/10.1016/j.dental.2015.12.005

Shen, J. (2014). Cerámicas de Odontología. Elsevier.vol 3 (1-530).

Shimanda, A. (2015). Effect of experimental jaw muscle pain on dynamic bite force during mastication. Oral Biology. vol 60(256-266). https://doi.org/10.1016/j.archoralbio.2014.11.001

Sigueira, F. (2016). Laboratory performance of universal adhesive systems for luting CAD/CAM Restorative Materials. Journal Adhesive Dentistry,18 (331-340). https://doi.org/10.3290/j.jad.a36519

Skouridou, N. (2013). Fracture strength of minimally prepared all-ceramic CEREC crowns after simulating 5 years of service. Dental Master, vol 29 (70-77). https://doi.org/10.1016/j.dental.2013.03.019

Spitznagel, F. (2014). Resin Bond to Indirect composite and new ceramic/polymer materials. A rewiew of the Literature. Journal of Esthetic restoration Dentistry. vol 26 (382-393). https://doi.org/10.1111/jerd.12100

Stona, D. (2015). Fracture resistence of computer aided design and aumputer aided manofacturing ceremic crown cemented on solid abutments. The journal of American dental association, vol 146 (501-507). https://doi.org/10.1016/j.adaj.2015.02.012

Tiu, J. (2015). Reporting numeric values of complete crowns. Part 1: Clinical preparation parameters. The journal of prosthetic dentistry, vol (114 (67-74). https://doi.org/10.1016/j.prosdent.2015.01.006

Tsujimoto, A. (2010). Enamel bonding of single-step selfetch adhesive: influence of surface energy characteristics. 38 (123 -130). https://doi.org/10.1016/j.jdent.2009.09.011

Yildiz, C. (2013). Marginal internal adaptation and fracture resistance of CAD/CAM Crown restorations. Dental Materials Journal, vol 42 (199- 209). https://doi.org/10.1016/j.jdent.2013.10.002

Zahran, M. (2015). Benchmarking outcomes in implant prosthodontics: Partial fixed dental prostheses and crowns supported by implants with a turned surface over 10 to 28 years at the University of Toronto. Int J Oral Maxillofac Implants.vol 21 (45-53). https://doi.org/10.11607/jomi.5454

Zhang, Y. (2016). Frature resistant monolitic dental crowns. Dental Materials, vol 32 ( 442-449). https://doi.org/10.1016/j.dental.2015.12.010

Zhang, Z. (2016). Effects of design parameters on fracture resistance of glass simulated dental crowns. Dental Materials. vol 32 (373-384). https://doi.org/10.1016/j.dental.2015.11.018

Zhang. Y. (2013). Fatigue of dental ceramics. Journal of Dentristry, vol 41(135 - 147). https://doi.org/10.1016/j.jdent.2013.10.007

Published

2020-10-06

Issue

Section

Research Article

How to Cite

Fracture resistance of crowns prepared with lithium disilicate applied to different marginal terminations F. (2020). Odontología Vital, 1(32), 45-56. https://doi.org/10.59334/ROV.v1i32.379

Similar Articles

1-10 of 204

You may also start an advanced similarity search for this article.