Antibacterial and antioxidant effect of ecuadorian red fruits on streptococcus mutans: in vitro study

Authors

  • Ivonne Yesenia Reyes Pillajo Universidad Central del Ecuador
  • Stalin Gustavo Santacruz Terán Eloy Alfaro Secular University of Manabi
  • Marlon Reinaldo Castro García Eloy Alfaro Secular University of Manabi
  • Clara Elena Villacres Ministry of Agriculture and Livestock
  • María Fernanda Chávez Campuzano Dentimagen Dental Center
  • Ana Del Carmen Armas Vega Central University of Ecuador

DOI:

https://doi.org/10.59334/ROV.v2i31.323

Keywords:

Chlorhexidine, red fruits, Streptococcus mutans

Abstract

Objective: To evaluate by quantification of halos of inhibition, the antibacterial effect of the shell and pulp of capulí, (Prunus serotina capuli) and mortiño (Vaccinium floribundum), on strains of Streptococcus mutans (ATCC 35668) at 24 and 48 hours, compared with dehydrated cranberry and chlorhexidine gluconate at 0,12%.

Materials and methods: in vitro cross-sectional experimental study, 15 petri dishes were used to plant 20 ul of the evaluated substances were placed in each box, mortiño, and capuli, in pulp and in shell, dehydrated cranberry and 0,12% chlorhexidine gluconate as control, distributed at an equidistant distance. The analysis of the antibacterial effect was performed by measuring the zone of inhibition in a time of 24 and 48 hours of incubation, the data obtained were statistically analyzed in the SPSS 22 program by parametric and Kruskal Wallis tests.

Results: there was no significant statistical difference between the analyzed variables, capuli and mortiño, both in skin and pulp and chlorhexidine used as control, in the two evaluated periods of time (p=>0,05).

Conclusions: the red fruits analyzed have an antibacterial effect 24 and 48 hours, which is related to its antioxidant capacity.

Downloads

Download data is not yet available.

References

Chamorro Jiménez AL, Ospina Cataño A, Arango Rincón C, Martínez Delgado CM (2013). Effect of secretory IgA on the adherence of Streptococcus Mutans on human teeth. CES Odontología. 26(1): 76-106.

Núñez DP, Bacallao LG. (2010). Bioquímica de la caries dental. Habanera de Ciencias Médicas. 9(2): 156-157. Ojeda Garcés JC, Oviedo García E, Salas LA. (2013). Streptococcus mutans and dental caries. CES Odontología.: 44-56.

Duque de Estrada Riverón, J; Pérez Quiñonez, J A; Hidalgo Gato Fuentes, I. (2006). Caries dental y ecología bucal, aspectos importantes a considerar. Cubana de estomatología. 43(1): p. 202-206.

Bravo Rivera L, Torres Chianale F, Fierro Monti C, Pérez Flores MA. (2010). Estado de salud bucal en preescolares con sobrepeso de Concepción, Chile. International journal of odontostomatology; 4(3): 267-270. https://doi.org/10.4067/S0718-381X2010000300009

Cerón Bastidas XA. (2015). El sistema ICDAS como método complementario para el diagnóstico de caries dental. Revista CES Odontología. 28(2): 100-109.

Ochoa A. Rafael LRI. (2013). Perspectiva evolutiva en el diagnóstico visual de caries dental. Odous cientifica. 14(2): 39-48.

Kumarasamy B, Manipal S, Duraisamy P, Ahmed A, Mohanaganesh S, Jeevika C. (2014). Role of aqueous extract of morinda citrifolia (Indian noni) ripe fruits in inhibiting dental caries-causing streptococcus mutns and strepto-coccus mitis. J Dent. 11; 11(6): 703-10.

Mehta VV, Rajesh G, Rao A. (2014). Antimicrobial Efficacy of punica granatum mesocarp, Nelumbo nucifera Leaf, Psidium guajava Leaf and coffea Canephora Extraxt on Common Oral Patghogens : An In-Vitrio Study. J Clin Diagn. 8(7): 65-8. https://doi.org/10.7860/JCDR/2014/9122.4629

Weiss EI, Lev Dor R, Sharon N, Ofek I. (2002). Inhibitory effect of high-molecular-weight constituent of cranberry on adhesion of oral bacteria. Critical Reviews in Food Science & Nutrition. 42(3): 285-92.

Ajay Krishna PG, Sivakumar TR, Jin C, Li SH, Weng YJ, Yin J, Jia JQ, Wang CY, Gui ZZ. (2018); Antioxidant and Hemolysis Protective Effects of Polyphenol-Rich Extract from Mulberry Fruits.Pharmacogn Mag. 14(53):103-109. https://doi.org/10.4103/pm.pm_491_16

Khairnar MR, Karibasappa GN, Dodamani AS, Vishwakarma P, Naik RG, Deshmukh MA. (2015). Comparative assessment of Cranberry and Chlorhexidine mouthwash on streptococcal colonization among dental students: A randomized parallel clinic trial. Contemporary Clinical Dentistry. 6(1): 35-39. https://doi.org/10.4103/0976-237X.149289

Bevilacqua L, Liani G, Castronovo G, Costantinides F. (2016). Clinical and spectrophotometric evaluation after chlorhexidine use in periodontal flap surgery: A prospective randomized clinical trial. Am J Dent.;29(2):75-80.

Kampf G. (2016). Acquired resistance to chlorhexidine - is it time to establish an ‘antiseptic stewardship’ initiative? J Hosp Infect. 94(3):213-227. https://doi.org/10.1016/j.jhin.2016.08.018

Zapata C, Sepúlveda Valencia U, Rojano BA. (2015). Efecto del Tiempo de Almacenamiento sobre las Propiedades Fisicoquímicas, Probióticas y Antioxidantes de Yogurt Saborizado con Mortiño (Vaccinium meridionale Sw). In-formación tecnológica. 26(2): 17-28. https://doi.org/10.4067/S0718-07642015000200004

Montoya CG, Arredondo JD, Arias ML, Cano C IM, Rojano BA. (2012). Cambios en la actividad antioxidante en frutos de mortiño (Vaccinium meridionale Sw.) durante su desarrollo y maduración. Fac. Nal. Agr. Medellín. 65(1): 6487-6495.

Coba Santamaría P, Coronel D, Verdugo K, Paredes MF, Yugsi E, Huach L. (2012). Estudio etnobotánico del mortiño (Vaccinium floribundum) como alimento ancestral y potencial alimento funcional. Revista de Ciencias de la Vida. 16(2): 5-13. https://doi.org/10.17163/lgr.n16.2012.01

Asturizaga AS, Øllgaard B, Balslev H. (2006). Frutos comestibles. Botánica económica de los Andes Centrales. 1: 329-346.

Tomás Barberán FA. (2003).Los polifenoles de los alimentos y la salud. Alimentación, nutrición y salud. 10(2): p. 41-53

Jimenez M, Castillo I, Azuara E, Berist CI. (2011). Actividad antioxidante y antimicrobiana de extractos de capulí (Prunus serotina subsp capuli). Revista Mexicana de Ingeniería Química. 10(1): 29-37.

Hua Q, Chen C, Tel Zur N, Wang H, Wu J, Chen J, Zhang Z, Zhao J, Hu G, Qin Y. (2018). Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiol Biochem. May;126:117-125. https://doi.org/10.1016/j.plaphy.2018.02.027

Asunción R. IS. (2010). Atención farmacéutica en la enfermedad periodontal. Plantas medicinales. 1(1): 24-36.

Trivedi S, Lal N. (2017). Antioxidantenzymes in periodontitis.J Oral Biol Craniofac Res.;7(1):54-57. https://doi.org/10.1016/j.jobcr.2016.08.001

Re R. Antioxidant Activity Applying an improved ABTS Radical Cation Decolorization Assay. Free Radical Bio Med. 1999; 26: 1231-37. https://doi.org/10.1016/S0891-5849(98)00315-3

Cisneros Domínguez G, Hernández Borges Y. (2011). La educación para la salud bucal en edades tempranas de la vida. Medisan. 15(10): p. 1445-1458.

Quintero Ortiz JE, Mendez Martínez MJ, Medina Seruto M, Gómez Mariño M. Factores de riesgo y caries dental en adolescentes de 12 a 15 años. Revista Archivo Médico de Camagüey. 2008 Jun; 12(3)

Lagha AB, Dudonné S, Desjardins Y, Grer D. (2015). Wild blueberry (vaccinium angustifolium ait.) polyphenols target fusobacterium nucleatum and the host inflammatory response: potential innovative molecules for treating periodontal diseases. J. Agric. Food Chem. Julio; 63(31): p. 6999-7008. https://doi.org/10.1021/acs.jafc.5b01525

Dawes C. (2006). Absorption of urea through the oral mucosa and estimation of the percentage of secreted whole saliva inadvertently swallowed during saliva collection. PubMed. 51(2): p. 111-116. https://doi.org/10.1016/j.archoralbio.2005.05.007

Santamaría PC, Coronel D, Verdugo K, Paredes MF, Yugsi E, Huach L. (2012). Estudio etnobotánico del mortiño (Vaccinium floribundum) como alimento ancestral y pontecial alimento funcional. Revista de Ciencias de la Vida.16(2): p. 5-13. https://doi.org/10.17163/lgr.n16.2012.01

Hanbali LB, Ghadieh RM, Hasan HA, K Nakhal Y, Haddad JJ. (2013). Measurement of antioxidant activity and antioxidant compounds under versatile extraction conditions: I. the immuno-biochemical antioxidant property of sweet cherry (Prunus avium) extracts. Antiinflamm Antiallergy Agents Med Chem. 12(2):173-87. https://doi.org/10.2174/1871523011312020009

Luna-Vázquez FJ, Ibarra-Alvarado C, Rojas-Molina A, Romo-Mancillas A, López-Vallejo FH, Solís-Gutiérrez M, Rojas-Molina JI, Rivero-Cruz F. (2016). Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Urso-lic Acid and Uvaol from Black Cherry Prunus serotina Fruits. Molecules. 12; 21(1):78. https://doi.org/10.3390/molecules21010078

Lopera YE, Fantinelli J, González Arbeláez LF, Rojano B, Ríos JL, Schinella G, Mosca S. (2013). Antioxidant Activity and Cardioprotective Effect of a Nonalcoholic Extract of Vacciniummeridionale Swartz during Ischemia-Reper-fusion in Rats.Evid Based Complement Alternat Med,516727. https://doi.org/10.1155/2013/516727

López-Padilla A, Martín D, Villanueva Bermejo D, Jaime L, Ruiz-Rodriguez A, Restrepo Flórez CE, Rivero Barrios DM, Fornari T. (2018). Vaccinium meridionale Swartz extracts and their addition in beef burgers as antioxidant ingredient. J Sci Food Agric.; 98(1):377-383. https://doi.org/10.1002/jsfa.8483

Published

2019-10-22

Issue

Section

Research Article

How to Cite

Antibacterial and antioxidant effect of ecuadorian red fruits on streptococcus mutans: in vitro study. (2019). Odontología Vital, 2(31), 23-31. https://doi.org/10.59334/ROV.v2i31.323

Similar Articles

You may also start an advanced similarity search for this article.