Resistencia a fractura de coronas elaboradas con disilicato de litio aplicadas en diferentes terminaciones marginales

Autores/as

  • Marco Zúñiga Llerena Universidad de las Américas
  • Fabián Rosero Salas Universidad de las Américas
  • Byron Velásquez Ron Universidad de las Américas

DOI:

https://doi.org/10.59334/ROV.v1i32.379

Palabras clave:

Corona dental, materiales dentales, fracaso de restauraciones dentales, preparación dental, disilicato de litio, chamfer, filo de cuchillo, resistencia flexural, CAD–CAM, diseño asistido por computadora

Resumen

Evaluar la influencia del tipo de terminación marginal; filo de cuchillo (F) y chamfer (C) sobre la resistencia flexural de coronas de disilicato de litio CAD/CAM en espesores de 0,8 mm y 0,5 mm.

Materiales y métodos: 40 premolares superiores sanos, en 2 grupos de acuerdo con el tipo de terminación G1=F y G2=C; 2 subgrupos referentes al espesor del material Sg1=0,8mm y Sg2 0,5 mm (5 coronas por cada subgrupo), se sometieron a fuerzas de compresión vertical (v) y horizontal (h). Se observó el tipo de fractura más frecuente; cohesivas en porcelana (cp), adhesiva en porcelana (ap), mixta pequeña (mp) y mixta larga (ml). Resultados: en preparaciones a 0,8 mm y 0,5 mm, existió diferencia significativa en relación con la mejor terminación, esta fue el C; sus valores fueron, Sg1 (h=1347,2 N / v=1402,0. F; Sg1 (h=965,6 N/ v= 794,8 N). F a 0,5 mm mostró mejor desempeño ante fuerzas horizontales. C; Sg2 (h=924,8 N /v=813,4 N) y para F; Sg2 (h=1217,0 N /v= 576,0 N).

Conclusiones: tipo de fractura más frecuente es cp y ap. Terminación chamfer y filo de cuchillo pueden ser utilizados con seguridad, pues muestran valores aceptables de resistencia flexural, al reducirse el grosor de la restauración en chamfer reduce su resistencia, el filo de cuchillo la aumenta.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anusavice, K. (2012 ). Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal-ceramic fixed dental prostheses. Dental Materials, vol 1 (102–111). https://doi.org/10.1016/j.dental.2011.09.012

Anwar, M. (2015). The effect of luting cement Type and Thickness on stress distribution in upper premolar implant restore with metal ceramic crowns. Tanta dental journal, vol1 (48-55). https://doi.org/10.1016/j.tdj.2015.01.004

Att, W. (2016). Fracture resistance of single-tooth implant-supported all ceramic restorations after exposure to the arti-ficial mouth, vol 33 (380–386). https://doi.org/10.1111/j.1365-2842.2005.01571.x

Azim, T. (2015). Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. The Journal of Prosthetic Dentistry, Vol 2 (25-41).

Carvalho, A. (2014). Fatigue resistence of CAD CAM complete Crowns with a simplified cementation process. The jour-nal of prothetic dentistry, vol 111(310-317). https://doi.org/10.1016/j.prosdent.2013.09.020

Carrión, M. (s.f.). Instrumentos e insumos para el tallado dental. Recuperado el 27 de abril de 2017, de http://marcoca-rrion.blogspot.com/

Commisso. M. (2015). Finite element analysis of the human mastication cycle. Journal of the Mechanical Behavior of Biomedical Materials. vol 41 (23- 35). https://doi.org/10.1016/j.jmbbm.2014.09.022

Contrepois, M. (2013). Marginal adaptation of ceramic crowns: A systematic review. The Journal of Prosthetic Dentis-try, 447-454. vol 110 (447- 454). https://doi.org/10.1016/j.prosdent.2013.08.003

Clausen, J. (2010). Dynamic fatigue and fracture resistance of non-retentive all- ceramic full-coverage molar restora-tions. Influence of ceramic material and preparation design. Dental Material, vol 26 (533-538). https://doi.org/10.1016/j.dental.2010.01.011

Dhima, M. (2014). Practice-based clinical evaluation of ceramic single crowns after at least five years. The Journal of Prosthetic Dentistry, vol111(124-130). https://doi.org/10.1016/j.prosdent.2013.06.015

Edelhoff, D. (2012). Tooth structure removal associated with various preparation designs for anterior teeth. Journal of Prosthetics Dentistry .vol 87 ( 503- 509). https://doi.org/10.1155/2012/742509

Fathi, H. (2015). The effect of TiO2 concentration on properties of apatite-mullite glass-ceramics for dental use. Avan-ces en odontoestomatologia. vol 32(311-322). https://doi.org/10.1016/j.dental.2015.11.012

Gracis, S. (2015). A new classification system for all ceramic like restorative materials. International Journal of prosthodontics, vol 38 (227-235). https://doi.org/10.11607/ijp.4244

Gressler, L. (2015). influence of resine cement Thickness on the fatigue failure loads of CAD CAM feldespatic crowns. Dental Materials, vol 31 (895- 900). https://doi.org/10.1016/j.dental.2015.04.019

Guzman, J. (2012). influence of surface treatment time with flourhidric acid vita VM 13 porcelain on tensile bond strength to a luting resin cement. In vitro study. Revista clinica de priodoncia impantologia y rehabilitacion oral, vol 5 (117-121). https://doi.org/10.1016/S0718-5391(12)70104-0

Habekost, G. (2011). Fracture resistance of premolars restored with partial ceramic restorations and submitted to two different loading stresses. vol 31 (204-211). https://doi.org/10.2341/05-11

Helvey, G. (2014). Classifying dental ceramics: Numerous materials and formulations available for indirect restora-tions, Compendium of Continuing education in Dentistry, vol 35 (38 – 43).

Homaei, E. (2016). Static and fatigue mechanical behavior of three dental CAD/CAM ceramics. Diario del comporta-miento mecánico de materiales biomédicos. vol 59 (304-313). https://doi.org/10.1016/j.jmbbm.2016.01.023

Kim, B. (2013). An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sin-tering system. dental materials, vol 29 (91-96). https://doi.org/10.1016/j.dental.2013.04.007

Kim, L. (2014). Ceramic dental biomaterials and CAD/CAM technology: State of the art. Journal of Prosthodontic Re-search, vol 58 (208–216). https://doi.org/10.1016/j.jpor.2014.07.003

Lawn, E. (2016). Fracture-resistant monolithic dental crowns. Dental Materials. vol 32 (442/449). https://doi.org/10.1016/j.dental.2015.12.010

Maghrabi, A. (2011). Relationship of margin design for fiber-reinforced composite crowns to compressive fracture resis-tance. American Collegue of Prosthodontist., vol 20 (355-360). https://doi.org/10.1111/j.1532-849X.2011.00713.x

Nicolasen, M.(2014). Comparation of fatigue resistance and failure modes between metal ceramic and all cerami crowns by cyclic loading in water. journal of dentistry, vol 42 (1613-1620). https://doi.org/10.1016/j.jdent.2014.08.013

Oilo, M. (2014). Simulation of clinical fractures for three different all ceramic crowns. European Journal of Oral Scien-ce, vol 122 (245–250). https://doi.org/10.1111/eos.12128

Olio, M. (2016). Fracture origins in twenty two dental alumina crowns. Journal of mechanical Behavior of biomecani-cal materials, vol 31 (93-103). https://doi.org/10.1016/j.jmbbm.2015.08.006

Olio, M. (2013). Fractographic analyss of all ceramic crowns: A study of 27 clinically fractured crowns. Dental Mate-rials, vol 29 (78-84). https://doi.org/10.1016/j.dental.2013.03.018

Olio. M. (2013). Clinically relavant fracture testing of all ceramic crowns. Dental Materials, vol 29( 815-823). https://doi.org/10.1016/j.dental.2013.04.026

Pegoraro, L. (2010). Prótesis fija. Bauru: Artes Médicas. vol 4 (1-305).ISNB:85- 404-039-8.

Peixotto, R. (2007). Light transmission trough porcelain. Dental Materials, vol (1363-1368). https://doi.org/10.1016/j.dental.2006.11.025

Poggio, C. (2012). A retrospective analysis of 102 zirconia single crowns with knife-edge margins. The Journal of Prosthetic Dentistry, vol 107 (316- 321). https://doi.org/10.1016/S0022-3913(12)60083-3

Preis, V. (2015). Influence of cementation on in vitro performance, marginal adaptation and fracture resistance of CAD/ CAM-fabricated ZLS molar crowns. Dental Materials, vol 31 (1363-1369). https://doi.org/10.1016/j.dental.2015.08.154

Ritter, A. (2009). An eight-year clinical evaluation of filled and unfilled one-bottle dental adhesives. Journal of the den-tal American association, vol 140(28-37). PMID: 19119164. https://doi.org/10.14219/jada.archive.2009.0015

Rueda, A. (2015). Puesta en contacto y la fatiga de la chapa de porcelana feldespática sobre zirconia . Materiales den-tales , vol 31(217-224). https://doi.org/10.1016/j.dental.2014.12.006

Rungruanganut, P. (2010). Two imaging techniques for 3D quantification of pre- cementation space for CAD/CAM crowns. Journal of Dentistry, vol 38 (995-1000). https://doi.org/10.1016/j.jdent.2010.08.015

Scherrer, S. (2010). Direct comparison of the bond strength results of the different test methods: a critical literature re-view: Dental Materials. vol 6(78-93). https://doi.org/10.1016/j.dental.2009.12.002

Shahrbaf, S. (2014). Fracture strength of machined ceramic crowns as a function of tooth preparation design and the elastic modulus of the cement. Dental Materials, vol 30 (234-241). https://doi.org/10.1016/j.dental.2013.11.010

Shemblish, F. (2016). Fatigue resistance of CAD CAM resine composite molar crowns . Dental Materials. vol 32(499-509). https://doi.org/10.1016/j.dental.2015.12.005

Shen, J. (2014). Cerámicas de Odontología. Elsevier.vol 3 (1-530).

Shimanda, A. (2015). Effect of experimental jaw muscle pain on dynamic bite force during mastication. Oral Biology. vol 60(256-266). https://doi.org/10.1016/j.archoralbio.2014.11.001

Sigueira, F. (2016). Laboratory performance of universal adhesive systems for luting CAD/CAM Restorative Materials. Journal Adhesive Dentistry,18 (331-340). https://doi.org/10.3290/j.jad.a36519

Skouridou, N. (2013). Fracture strength of minimally prepared all-ceramic CEREC crowns after simulating 5 years of service. Dental Master, vol 29 (70-77). https://doi.org/10.1016/j.dental.2013.03.019

Spitznagel, F. (2014). Resin Bond to Indirect composite and new ceramic/polymer materials. A rewiew of the Literature. Journal of Esthetic restoration Dentistry. vol 26 (382-393). https://doi.org/10.1111/jerd.12100

Stona, D. (2015). Fracture resistence of computer aided design and aumputer aided manofacturing ceremic crown cemented on solid abutments. The journal of American dental association, vol 146 (501-507). https://doi.org/10.1016/j.adaj.2015.02.012

Tiu, J. (2015). Reporting numeric values of complete crowns. Part 1: Clinical preparation parameters. The journal of prosthetic dentistry, vol (114 (67-74). https://doi.org/10.1016/j.prosdent.2015.01.006

Tsujimoto, A. (2010). Enamel bonding of single-step selfetch adhesive: influence of surface energy characteristics. 38 (123 -130). https://doi.org/10.1016/j.jdent.2009.09.011

Yildiz, C. (2013). Marginal internal adaptation and fracture resistance of CAD/CAM Crown restorations. Dental Mate-rials Journal, vol 42 (199- 209). https://doi.org/10.1016/j.jdent.2013.10.002

Zahran, M. (2015). Benchmarking outcomes in implant prosthodontics: Partial fixed dental prostheses and crowns supported by implants with a turned surface over 10 to 28 years at the University of Toronto. Int J Oral Maxillofac Im-plants.vol 21 (45-53). https://doi.org/10.11607/jomi.5454

Zhang, Y. (2016). Frature resistant monolitic dental crowns. Dental Materials, vol 32 ( 442-449). https://doi.org/10.1016/j.dental.2015.12.010

Zhang, Z. (2016). Effects of design parameters on fracture resistance of glass simulated dental crowns. Dental Mate-rials. vol 32 (373-384). https://doi.org/10.1016/j.dental.2015.11.018

Zhang. Y. (2013). Fatigue of dental ceramics. Journal of Dentristry, vol 41(135 - 147). https://doi.org/10.1016/j.jdent.2013.10.007

Descargas

Publicado

2020-10-06

Cómo citar

Zúñiga Llerena, M., Rosero Salas, F., & Velásquez Ron, B. (2020). Resistencia a fractura de coronas elaboradas con disilicato de litio aplicadas en diferentes terminaciones marginales. O.V., 1(32), 45–56. https://doi.org/10.59334/ROV.v1i32.379

Número

Sección

Artículo de investigación

Métricas alternativas