Changes in salivary composition of chemically dependent subjects

Authors

  • Luciana Lyra Universidade Federal do Paraná
  • William Bellani Universidade Federal do Paraná
  • Carolina E. Mazur Universidade Federal do Paraná
  • João A. Brancher Pontifícia Universidade Católica do Paraná
  • Antonio Adilson S. de Lima Universidade Federal do Paraná
  • José Miguel Amenábar Universidade Federal do Paraná

DOI:

https://doi.org/10.59334/ROV.v1i32.381

Keywords:

Saliva, alcohol, cannabis, cocaine, salivary composition, substance-related disorders, substance dependence, drugs

Abstract

Chemically dependent subjects may present relevant changes in the volume and composition of salivary fluid because the secretion of the salivary glands is controlled by the parasympathetic and sympathetic system. The aim of this study was to compare the salivary concentration of total proteins, amylase, urea, calcium, phosphate and flow rate between chemically dependent and non-chemically dependent subjects. Saliva flow rate, calcium, phosphate, total protein, amylase and urea concentrations were measure in both groups: chemical dependent group (n=27) and control group (n=27).

Saliva samples, from the chemically dependents, were taken one day before the beginning of the detoxification treatment. Statistical analysis was undertaken using t-test. The salivary flow and the urea concentration did not present statistically significant difference between the groups. However, total proteins, amylase, calcium and phosphate concentrations were statistically higher on the chemical dependents group. Saliva composition seems to be modified by the chronic use of alcohol and illicit drugs.

Downloads

References

Antoniazzi, R. P., Lago, F. B., Jardim, L. C., Sagrillo, M. R., Ferrazzo, K. L., & Feldens, C. A. (2018). Impact of crack cocaine use on the occurrence of oral lesions and micronuclei. Int J Oral Maxillofac Surg, 47(7), 888-895. https://doi.org/10.1016/j.ijom.2017.12.005

Aps, J. K., & Martens, L. C. (2005). Review: The physiology of saliva and transfer of drugs into saliva. Forensic Sci Int, 150(2-3), 119-131. https://doi.org/10.1016/j.forsciint.2004.10.026

Banderas-Tarabay, J. A., González-Begné, M., Sánchez-Garduño, M., Millán-Cortéz, E., López-Rodríguez, A., & Vilchis-Velázquez, A. (1997). [The flow and concentration of proteins in human whole saliva]. Salud Publica Mex, 39(5), 433-441. https://doi.org/10.1590/S0036-36341997000500006

Beal, A. M. (1991). Effect of phosphate-regulating hormones on plasma composition, cardiovascular function, and parotid salivary phosphate secretion in red kangaroos (Macropus rufus). Gen Comp Endocrinol, 81(1), 64-71. https://doi.org/10.1016/0016-6480(91)90125-P

Carpenter, G. H. (2013). The secretion, components, and properties of saliva. Annu Rev Food Sci Technol, 4, 267-276. https://doi.org/10.1146/annurev-food-030212-182700

Castle, A. M., & Castle, J. D. (1998). Enhanced glycosylation and sulfation of secretory proteoglycans is coupled to the expression of a basic secretory protein. Mol Biol Cell, 9(3), 575-583. https://doi.org/10.1091/mbc.9.3.575

Cho, C. M., Hirsch, R., & Johnstone, S. (2005). General and oral health implications of cannabis use. Aust Dent J, 50(2), 70-74. https://doi.org/10.1111/j.1834-7819.2005.tb00343.x

da Fonseca, M. A. (2009). Substance use disorder in adolescence: a review for the pediatric dentist. J Dent Child (Chic), 76(3), 209-216.

Dackis, C. A., & O’Brien, C. P. (2001). Cocaine dependence: a disease of the brain’s reward centers. J Subst Abuse Treat, 21(3), 111-117. https://doi.org/10.1016/S0740-5472(01)00192-1

Dawes, C. (1984). Stimulus effects on protein and electrolyte concentrations in parotid saliva. J Physiol, 346, 579-588. https://doi.org/10.1113/jphysiol.1984.sp015042

Enberg, N., Alho, H., Loimaranta, V., & Lenander-Lumikari, M. (2001). Saliva flow rate, amylase activity, and protein and electrolyte concentrations in saliva after acute alcohol consumption. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 92(3), 292-298. https://doi.org/10.1067/moe.2001.116814

Gossop, M., Manning, V., & Ridge, G. (2006). Concurrent use and order of use of cocaine and alcohol: behavioural differences between users of crack cocaine and cocaine powder. Addiction, 101(9), 1292-1298. https://doi.org/10.1111/j.1360-0443.2006.01497.x

Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry, 162(8), 1403-1413. https://doi.org/10.1176/appi.ajp.162.8.1403

Koob, G. F. (1992). Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci, 13(5), 177-184. https://doi.org/10.1016/0165-6147(92)90060-J

Macpherson, L. M., & Dawes, C. (1991). Urea concentration in minor mucous gland secretions and the effect of salivary film velocity on urea metabolism by Streptococcus vestibularis in an artificial plaque. J Periodontal Res, 26(5), 395-401. https://doi.org/10.1111/j.1600-0765.1991.tb01728.x

Magura, S., & Rosenblum, A. (2000). Modulating effect of alcohol use on cocaine use. Addict Behav, 25(1), 117-122. Newlin, D. B. (1995). Effect of cocaine on vagal tone: a common factors approach. Drug Alcohol Depend, 37(3), 211-216. https://doi.org/10.1016/S0306-4603(98)00128-2

Olière, S., Joliette-Riopel, A., Potvin, S., & Jutras-Aswad, D. (2013). Modulation of the endocannabinoid system: vulnerability factor and new treatment target for stimulant addiction. Front Psychiatry, 4, 109. https://doi.org/10.3389/fpsyt.2013.00109

Pateria, P., de Boer, B., & MacQuillan, G. (2013). Liver abnormalities in drug and substance abusers. Best Pract Res Clin Gastroenterol, 27(4), 577-596. https://doi.org/10.1016/j.bpg.2013.08.001

Proctor, G. B. (2016). The physiology of salivary secretion. Periodontol 2000, 70(1), 11-25. https://doi.org/10.1111/prd.12116

Proctor, G. B., & Carpenter, G. H. (2007). Regulation of salivary gland function by autonomic nerves. Auton Neurosci, 133(1), 3-18. https://doi.org/10.1016/j.autneu.2006.10.006

Proctor, G. B., & Carpenter, G. H. (2014). Salivary secretion: mechanism and neural regulation. Monogr Oral Sci, 24, 14-29. https://doi.org/10.1159/000358781

Ralevic, V. (2003). Cannabinoid modulation of peripheral autonomic and sensory neurotransmission. Eur J Pharmacol, 472(1-2), 1-21. https://doi.org/10.1016/S0014-2999(03)01813-2

Rawal, S. Y., Tatakis, D. N., & Tipton, D. A. (2012). Periodontal and oral manifestations of marijuana use. J Tenn Dent Assoc, 92(2), 26-31; quiz 31-22.

Reddy, S., Kaul, S., Agrawal, C., Prasad, M. G., Agnihotri, J., Bhowmik, N., . . . Kambali, S. (2012). Periodontal Status amongst Substance Abusers in Indian Population. ISRN Dent, 2012, 460856. https://doi.org/10.5402/2012/460856

Riezzo, I., Fiore, C., De Carlo, D., Pascale, N., Neri, M., Turillazzi, E., & Fineschi, V. (2012). Side effects of cocaine abuse: multiorgan toxicity and pathological consequences. Curr Med Chem, 19(33), 5624-5646. https://doi.org/10.2174/092986712803988893

Ron, D., & Barak, S. (2016). Molecular mechanisms underlying alcohol-drinking behaviours. Nat Rev Neurosci, 17(9), 576-591. https://doi.org/10.1038/nrn.2016.85

Singh, A., Saluja, S., Kumar, A., Agrawal, S., Thind, M., Nanda, S., & Shirani, J. (2017). Cardiovascular Complications of Marijuana and Related Substances: A Review. Cardiol Ther. https://doi.org/10.1007/s40119-017-0102-x

Sordi, M. B., Massochin, R. C., Camargo, A. R., Lemos, T., & Munhoz, E. A. (2017). Oral health assessment for users of marijuana and cocaine/crack substances. Braz Oral Res, 31, e102. https://doi.org/10.1590/1807-3107bor-2017.vol31.0102

Thorn, J. J., Prause, J. U., & Oxholm, P. (1989). Sialochemistry in Sjögren’s syndrome: a review. J Oral Pathol Med, 18(8), 457-468. https://doi.org/10.1111/j.1600-0714.1989.tb01343.x

Turner, R. J., & Sugiya, H. (2002). Understanding salivary fluid and protein secretion. Oral Dis, 8(1), 3-11. https://doi.org/10.1034/j.1601-0825.2002.10815.x

Waszkiewicz, N., Galinska-Skok, B., Zalewska, A., Szajda, S. D., Zwierz, K., Wiedłocha, M., & Szulc, A. (2017). Salivary immune proteins monitoring can help detection of binge and chronic alcohol drinkers: Preliminary findings. Drug Alcohol Depend, 183, 13-18. https://doi.org/10.1016/j.drugalcdep.2017.10.016

Waszkiewicz, N., Zalewska-Szajda, B., Zalewska, A., Waszkiewicz, M., Szajda, S. D., Repka, B., . . . Zwierz, K. (2012). Decrease in salivary lactoferrin output in chronically intoxicated alcohol-dependent patients. Folia Histochem Cytobiol, 50(2), 248-254. https://doi.org/10.5603/FHC.2012.0024

Waszkiewicz, N., Zalewska-Szajda, B., Zalewska, A., Waszkiewicz, M., Szajda, S. D., Repka, B., . . . Zwierz, K. (2012). Salivary lysozyme in smoking alcohol dependent persons. Folia Histochem Cytobiol, 50(4), 609-612. https://doi.org/10.5603/17840

Waszkiewicz, N., Zalewska, A., Szajda, S. D., Szulc, A., Kepka, A., Minarowska, A., . . . Zwierz, K. (2012). The effect of chronic alcohol intoxication and smoking on the activity of oral peroxidase. Folia Histochem Cytobiol, 50(3), 450-455. https://doi.org/10.5603/19756

Waszkiewicz, N., Zalewska, A., Szajda, S. D., Waszkiewicz, M., Szulc, A., Kepka, A., . . . Zwierz, K. (2012). The effect of chronic alcohol intoxication and smoking on the output of salivary immunoglobulin A. Folia Histochem Cytobiol, 50(4), 605-608. https://doi.org/10.5603/19709

Woyceichoski, I. E., Costa, C. H., de Araújo, C. M., Brancher, J. A., Resende, L. G., Vieira, I., & de Lima, A. A. (2013). Salivary buffer capacity, pH, and stimulated flow rate of crack cocaine users. J Investig Clin Dent, 4(3), 160-163. https://doi.org/10.1111/j.2041-1626.2012.00126.x

Published

2020-10-06

Issue

Section

Research Article

How to Cite

Changes in salivary composition of chemically dependent subjects. (2020). Odontología Vital, 1(32), 63-70. https://doi.org/10.59334/ROV.v1i32.381

Similar Articles

1-10 of 44

You may also start an advanced similarity search for this article.