Memoria VIII Simposio Biología Tropical 2025

Autores/as

  • Carolina Esquivel Dobles Universidad Nacional
  • Tania Bermúdez Rojas Universidad Nacional
  • Daniel Rodríguez García Universidad Latina

Palabras clave:

comportamiento animal, gestión y educación ambiental, servicios ecosistémicos, participación comunitaria, fisiología vegetal, evaluación del hábitat, restauración ecológica, paleontología biológica, biodiversidad y corredores biológicos interurbanos.

Resumen

El lector encontrará en estas páginas los trabajos presentado en el Simposio por parte de estudiantes,
docentes, profesionales, trabajadores y amantes de las ciencias aplicadas, especialmente las biológicas.
Entre las líneas de investigación están las relacionadas con comportamiento animal, gestión y educación
ambiental, servicios ecosistémicos, participación comunitaria, fisiología vegetal, evaluación del
hábitat, restauración ecológica, paleontología biológica, biodiversidad y corredores biológicos interurbanos.
Se presentan resúmenes cortos y largos, además de fotografías de dicha actividad académica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Amici, A. A., Nadkarni, N. M., Williams, C. B., &

Gotsch, S. G. (2020). Differences in epiphyte biomass

and community composition along landscape

and within crown spatial scales. Biotropica,

(1), 46–58. https://doi.org/10.1111/btp.12725

Armstrong, R., & Bradwell, T. (2010). Growth of

crustose lichens: a review. Geografiska Annaler:

Series A, Physical Geography, 92(1), 3-17.

Benítez, A., Prieto, M., González, Y., & Aragón, G.

(2012). Effects of tropical montane forest disturbance

on epiphytic macrolichens. The Science

of the Total Environment, 441, 169–175.

https://doi.org/10.1016/j.scitotenv.2012.09.072

Benítez, A., Aragón, G., González, Y., & Prieto, M.

(2018). Functional traits of epiphytic lichens in response

to forest disturbance and as predictors of total

richness and diversity. Ecological Indicators, 86,

–26. https://doi.org/10.1016/j.ecolind.2017.12.021

Benítez, Á., Aragón, G., & Prieto, M. (2019). Lichen

diversity on tree trunks in tropical dry forests

is highly influenced by host tree traits. Biodiversity

and Conservation, 28(11), 2909–2929.

https://doi.org/10.1007/s10531-019-01805-9

Brigham, L. (2016). Distribution of Lichens and Bryophytes

Along an Elevational Gradient in the Monteverde

Cloud Forest, Costa Rica [, University of California, San

Diego, California]. RIS. https://digital.lib.usf.edu/content/

sf/s0/05/60/18/00001/m39-00568-brigham_laurel_lichen_

bryophyte_distribution_eap_spring_2016.pdf

Cordero S., R. A., Garrido, A., Pérez-Molina,

J. P., Ramírez-Alán, O., & Chávez, J. L.

(2021). Lichen community structure and richness

in three mid-elevation secondary forests in

Costa Rica. Revista De Biología Tropical, 69(2),

–699. https://doi.org/10.15517/rbt.v69i2.46162

Rogers, R. W. (1990). Ecological strategies

of lichens. The Lichenologist, 22(2), 149-162.

Sipman, H.J. (2020). Identification key and literature

guide to the genera of Lichenized Fungi (Lichens)

in the Neotropics. Botanic Garden & Botanical

Museum Berlin-Dahlem. https://archive.bgbm.

org/BGBM/ STAFF/Wiss/Sipman/keys/neokeyA.htm

Sipman, H.J., Lücking, R., Aptroot, A., Chaves, J.L.,

Kalb, K., & Tenorio, L.U. (2012). A first assessment

of the Ticolichen biodiversity inventory in Costa Rica

and adjacent areas: the thelotremoid Graphidaceae

(Ascomycota: Ostropales). Phytotaxa, 55(1),

–214. https://doi.org/10.11646/phytotaxa.55.1.1

Waring, B. (2008). Light exposure affects secondary

compound diversity in lichen communities in

Monteverde, Costa Rica [, University of Pennsylvania,

Pennsylvania]. RIS. https://digital.lib.usf.

edu/content/sf/s0/00/12/95/00001/m39-00376-

waring_bonnie_secondary_compound_diversity_

lichen_communities_ciee_spring_2007.pdf

Brousseau, L., Fine, P. V., Dreyer, E., Vendramin,

G. G., y Scotti, I. (2021). Genomic and phenotypic

divergence unveil microgeographic adaptation

in the Amazonian hyperdominant tree Eperua falcata

Aubl.(Fabaceae). Molecular Ecology, 30(5),

-1154.

Cernusak, L. A., Winter, K., Dalling, J. W.,

Holtum, J. A., Jaramillo, C., Körner, C., ... y

Wright, S. J. (2013). Tropical forest responses

to increasing atmospheric CO2: current

knowledge and opportunities for future research.

Functional plant biology, 40(6), 531-551.

Condit, R., Pérez, R. A., y Daguerre,

N. (2010). Trees of Panama and Costa

Rica (Vol. 74). Princeton University Press.

Flores, E.M. 2002. Samanea saman (Jacq).

Merr. In: Vozzo, J. A. Tropical tree seed

manual (No. 721) (pp. 701-704). US Department

of Agriculture, Forest Service.

Hogan, K. P., Smith, A. P., Araus, J. L., y Saavedra,

A. (1994). Ecotypic differentiation of gas exchange

responses and leaf anatomy in a tropical forest

understory shrub from areas of contrasting rainfall

regimes. Tree Physiology, 14(7-8-9), 819-831.

Hussain, S., Ulhassan, Z., Brestic, M., Zivcak,

M., Zhou, W., Allakhverdiev, S. I., ... y Liu, W.

(2021). Photosynthesis research under climate

change. Photosynthesis Research, 150, 5-19.

Makino, A., y Mae, T. (1999). Photosynthesis

and plant growth at elevated levels of CO2.

Plant and Cell Physiology, 40(10), 999-1006.

Peterson, A. G., Ball, T. J., Yiqi, L., Field, C. B., Reich,

P. B., Curtis, P. S., Griffin, K. L., Gunderson,

C. A., Norby, R. J., y Zak, D. R. (1999). The photosynthesis-

leaf nitrogen relationship at ambient

and elevated atmospheric carbon dioxide: A meta-

analysis. Global change biology, 5(3), 331-346.

Sage, R. F., Sharkey, T. D., y Seemann, J. R. (1989).

Acclimation of photosynthesis to elevated CO2 in

five C3 species. Plant Physiology, 89(2), 590-596.

Sharp, R. E., Matthews, M. A., y Boyer, J. S.

(1984). Kok effect and the quantum yield of

photosynthesis: light partially inhibits dark

respiration. Plant physiology, 75(1), 95-101.

Umaña, M. N., Salgado-Negret, B., Norden, N., Salinas,

V., Garzón, F., Medina, S. P., Rodríguez-M,

G. M., López-Camacho, R., Castaño-Naranjo, A.,

Cuadros, H., Franke-Ante, R., Avella, A., Idárraga-

Piedrahita, A., Jurado, R., Nieto, J., Pizano,

C., Torres, A. M., García, H., y González-M, R.

(2023). Upscaling the effect of traits in response

to drought: The relative importance of safety–efficiency

and acquisitive–conservation functional

axes. Ecology Letters, 26(12), 2098-2109.

Yin, X., Niu, Y., van der Putten, P. E., y Struik,

P. C. (2020). The Kok effect revisited.

New Phytologist, 227(6), 1764-1775.

Buchner, L., Eisen, A. K., & Jochner-Oette,

S. (2024). Effects of ash dieback on leaf

physiology and leaf morphology of Fraxinus

excelsior L. Trees, 38(5), 1205-1221.

Hódar, J. A. (2002). Leaf fluctuating asymmetry

of Holm oak in response to drought

under contrasting climatic conditions. Journal

of arid environments, 52(2), 233-243.

Li, Y., Zhang, Y., Liao, P. C., Wang, T., Wang, X.,

Ueno, S., & Du, F. K. (2021). Genetic, geographic,

and climatic factors jointly shape leaf morphology

of an alpine oak, Quercus aquifolioides

Rehder & EH Wilson. Annals

of Forest Science, 78, 1-18.

Venâncio, H., Alves-Silva, E., & Santos, J. C.

(2016). Leaf phenotypic variation and developmental

instability in relation to different light regimes.

Acta Botanica Brasilica, 30, 296-303.

Publicado

2025-03-03 — Actualizado el 2025-03-04

Versiones

Cómo citar

Esquivel Dobles, C., Bermúdez Rojas, T., & Rodríguez García, D. (2025). Memoria VIII Simposio Biología Tropical 2025. REDS, 7(1). Recuperado a partir de https://revistas.ulatina.ac.cr/index.php/ecologia/article/view/667 (Original work published 3 de marzo de 2025)